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1 The Law of total probability

Definition 1 (Partition) A collection of events {B1, B2, ..., Bn} forms a partition of the sample
space Ω if:

• Bi ∩Bj = ∅ for all i ̸= j.

•
k⋃

k=1

Bi = Ω.

Theorem 1 (Law of Total Probability) Let {B1, B2, ..., Bn} be a partition of Ω with P (Bi) > 0

for all i. Then for any event A:

P (A) =
k∑

k=1

P (ABk) =
k∑

k=1

P (A | Bk)P (Bk). (1)

proof: Using the countable additivity axiom and conditional probability definition:

A =
k⋃

k=1

ABk

(ABk)
⋂

(ABl) = ∅

P (A) = P

(
k⋃

k=1

ABk

)

=
n∑

i=1

P (A ∩Bi)

=
n∑

i=1

P (A|Bi)P (Bi)

2 Bayesian Theorem

Theorem 2 (Bayes’ Theorem) For any events Bk(k = 1, 2, ...) and A with P (A) > 0:

P (Bk|A) =
P (A|Bk)P (Bk)
k∑

k=1

P (A|Bk)P (Bk)

. (2)
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Example 1 (Naive Bayes Spam Filter) Suppose:

• 70% of emails are spam (P (Spam) = 0.7).

• 20% of emails are spam (P (Low Priority) = 0.2).

• 10% of emails are spam (P (High Priority) = 0.1).

• The word ”essay writing” appears in:

– 90% of spam emails (P (”essay writing”|Spam) = 0.9).

– 1% of legitimate emails (P (”essay writing”|Low Priority) = 0.01).

– 1% of legitimate emails (P (”essay writing”|High Priority) = 0.01).

Calculate the probability that an email containing ”essay writing” is spam.

Solution:

P (Spam|”essay writing”) = P (”essay writing”|Spam)P (Spam)

P (”essay writing”) ,

P (”essay writing”) = P (e.w.|Spam)P (Spam) + P (e.w.|Low Priority)P (Low Priority)

+ P (e.w.|High Priority)P (High Priority)

= 0.9× 0.7 + 0.01× 0.2 + 0.01× 0.1

= 0.633,

P (Spam|”essay writing”) = 0.9× 0.7

0.633
=

0.63

0.633
≈ 0.9953.

3 Continuity of Probability

Definition 2 (Monotonic Sequences) A sequence of events {An} is:

• Increasing if A1 ⊆ A2 ⊆ · · · (denoted An ↑ A).

• Decreasing if A1 ⊇ A2 ⊇ · · · (denoted An ↓ A),

where A = lim
n→∞

An.

Theorem 3 (Continuity of Probability) For any probability measure P :

1. If An ↑ A, then limn→∞ P (An) = P (A).

2. If An ↓ A and P (A1) < ∞, then lim
n→∞

P (An) = P (A).
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Proof for Increasing Sequence: Let B1 = A1, Bk = Ak \
k−1⋃
i=1

Ai for n ≥ 2.
Then:

lim
n→∞

P (An) = lim
n→∞

P

(
n⋃

i=1

Bn

)
= lim

n→∞

n∑
i=1

P (Bi)

= P (
∞⋃
i=1

Bi) = P (
∞⋃
i=1

Ai)

= P (A).

4 Random Variable

Definition 3 (Random Variable) A random variable X is a measurable function from a proba-
bility space (Ω,F , P ) to (R,B(R)):

X : Ω → R

• X: is a mapping, measurable function.

• Ω : outcomes.

• ω ∈ Ω, X(ω) ∈ R.

Example 2 (Coin Toss) Consider the probability space (Ω,F , P ) where:

• Sample space Ω = {H,T} represents the elementary outcomes.

• Define the indicator random variable X : Ω → {0, 1} by:

X(ω) =

1, if ω = H (Head).

0, if ω = T (Tail).

Example 3 (Stock Price of Today is Higher than Yesterday) Consider a financial asset’s daily
closing prices over time. Define:

• Sample space: Ω = {ω}t∈N where ω represents wether the stock price of today is higher than
yesterday.

• Event space: F = σ({H,L}) where:

– H, price increase.

– L , price decrease.
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• Random variable: X : Ω → {0, 1} defined as:

X(ω) =

1, if ω ∈ H.

0, if ω ∈ L.

Example 4 (Five Coin Tosses) Consider the canonical experiment of five independent coin tosses:

• Sample space: Ω =
{
ω = (ω1, . . . , ω5)

∣∣ωi ∈ {H,T}
}

where H denotes Heads and T denotes
Tails.

• Random variable: X : Ω → {0, 1, 2, 3, 4, 5} defined as:

X(ω) =

5∑
i=1

1{ωi=H}.

counting the total number of Heads in the sequence

• Realizations:

X(H,H,H,H,H) = 5.

5 the Relationship Between Random Variable and Probability

• X : Ω −→ R.

An outcome in the sample space is defined as a real number.

• Define a set A = [a, b] ⊆ R, then P (X ∈ A) = P (ω|ω ∈ Ω, X(ω) ∈ A).

Example 5 (Binomial Probability of Coin Tosses) Consider a sequence of n independent trials
representing fair coin tosses. Let X be the random variable counting the number of heads observed.

where:

• Ω = {HH...H,HH...T, ..., TT...T } (total n+ 1 element).

• if ω =

k︷ ︸︸ ︷
HH...H TT...T , then X(ω) = k.

P (X(ω) = k) = P (ω =

k︷ ︸︸ ︷
HH...H TT...T ) =

(
n

k

)(
1

2

)k (
1− 1

2

)n−k

.

Key Observations:

• The distribution is symmetric when p = 1
2
.
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• Sum of probabilities:

P (Ω) = 1 ⇒
n∑

k=0

P (X(ω) = k) = 1 ⇒
n∑

k=0

(
n
k

)(1

2

)n

= 2n
(
1

2

)n

= 1.

6 Cumulative Distribution Function(CDF)

Definition 4 (Cumulative Distribution Function) For a random variable X, its Cumulative
Distribution Function (CDF) is the function FX : R → [0, 1] defined by:

FX(x) = P (X ≤ x) = P ({ω ∈ Ω | X(ω) ≤ x}).

Theorem 4 (CDF Characterization) Any valid CDF must satisfy:

1. boundedness: 0 ≤ FX(x) ≤ 1.

2. Monotonic increasing: x1 < x2 ⇒ FX(x1) ≤ FX(x2).

3. Normalized:
lim

x→−∞
FX(x) = 0, lim

x→+∞
FX(x) = 1.

4. Right-Continuity: lim
y→x+

FX(y) = FX(x+) = FX(x).

Theorem 5 (the Property of CDF) 1. P (X = x) = FX(x)− FX(x−).

2. if FX(x) is continuous, then P (X = x) = 0, P (a ≤ x ≤ b) = P (a < x ≤ b) = P (a < x < b) =

P (a ≤ x < b).

3. P (x < X ≤ y) = FX(y)− FX(x).

4. P (X > x) = 1− FX(x).
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